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Optimization of Electrooptic Sampling by Volume-
Integral Method

W. Thomann, Student Member, IEEE, M. Rottenkolber, and P. Russer, Senior Member, IEEE

Abstract—A rigorous treatment of the influence of an inho-
mogeneous electric field on the differential polarization of an
optical field, and the corresponding change in transmission of
aretarder setup is presented. The method yields sensitivity coef-
ficients employed directly in a volume-integral. In case of an
external electrooptic probe tip a layered structure with a space-
harmonric potential and a Gaussian sampling beam is investi-
gated and results on sensitivity and spatial resolution are pre-
sented. The probing of inhomogeneous longitudinal and trans-
verse fields with the same setup is demonstrated for a microstrip
transmission line.

I. INTRODUCTION

LECTROOPTIC probing meets with growing interest

for noncontact and noninvasive measurements of in-
tegrated microwave circuits. The exact knowledge of the
influence of a microwave field in a planar circuit on the
Gaussian optical probe beam is essential for accurate
measurement. We describe a method for calculation of the
sensitivity and the spatial resolution. Especially, in cases
of electrooptic sampling utilizing a diode laser, sensitivity
is of utmost importance. The issue of invasiveness is ad-
dressed by Nagatsuma et al. [1] and Frankel ez al. [2].
The method presented is applicable to the case of direct
probing in electrooptic active substrates and the use of an
external electrooptic probe tip. The determination of the
change in polarization, and the resulting intensity varia-
tions of the reflected sampling beam after passing a po-
larizer, are based on the rigorous application of the vol-
ume-integral method. The introduced method takes into
account the Gaussian nature of the probing beam.

II. SENSITIVITY COEFFICIENTS

To calculate the change in transmission of an optical
beam in an electrooptic sampling setup including polar-
izers, we introduce a method which yields 1) sensitivity
coeflicients representing a linear relationship between
electrical fields and polarization of optical waves for ar-
bitrary crystal orientation, and 2) their direct application
to determine the change in transmission of the optical
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beam. We first calculate the differential change of polar-
ization for an arbitrarily directed homogeneous field and
for static isotrope uniaxial crystals. Consecutively, we
employ the introduced sensitivity coefficients in a vol-
ume-integral method for the application of inhomoge-
neous fields. Fig. 1 depicts the crystal coordinate system
x, the eigenmode-system £, with £ (ordinary eigenmode)
and ¥ (extraordinary eigenmode), and the beam axis e,
(parallel to 2), using polar coordinates (6, ¥). We choose
ez = e, X e, and use a coordinate transformation x =
A% (AT = A7) for further calculation. The impermeabil-
ity tensor b of a uniaxial crystal and its electrooptic part
b"° (n,—ordinary index of refraction, n,—extraordinary
index of refraction) with respect to x is given as:

> 0 0 8, & Os
b= 0 I’l;2 0 5 bEO = 66 62 64
0 0 ne_z 65 64 63
(1
with 8, = ZLi_, ruEP (rm—pockels coefficients,

E7—electric field components of microwave field). The
transformed impermeability tensor using d;, (Kronecker-
Delta) is

S
g = AT(_’; + b50>A — Bstal + BEO- 2)
nl
From Maxwell’s equations, we obtain a wave equation
for the dielectric displacement D: V X (V X bD) —
k3D = 0, and with respect to the direction of propagation
e,x We obtain a linear differential equation of first order:
0°D ) D
= —kgD and — = +jk,ND 3
B 072 0 0z T JKo (3)
where N is the index of refraction matrix. We define N in
such a manner that we obtain N>G, = I (G,—transverse
components of 8, I—unity matrix):
ny — Anl

_Af’l3
N = < > 4
—Any n, — An,

By comparison of N with 8 (2) and neglection of higher
order products (An;An, etc.), we can determine the ele-
ments of the matrix N.

A general solution of the coupled differential equation
(3) is: D = exp (jkoNz) D, (D,~—dielectric displacement

0018-9480/93$03.00 © 1993 IEEE



THOMANN et al.: OPTIMIZATION OF ELECTROOPTIC SAMPLING BY VOLUME-INTEGRAL METHOD 2393

Fig. 1. Definition of the used coordinate systems.

vector before entering the crystal). Next, the change in
polarization per unit length is described by the differential
Jones matrix [3] of the EO-crystal. In case of linear bire-
fringence without loss, we only need to consider the fol-
lowing two terms of the differential Jones matrix:

0 0 j
> +845<. > (5)
—J Jj 0

with go (linear birefringence parallel to the eigenmode
axis) and g.s (linear birefringence parallel to the angle
bisector of the eigenmode axes). The rotated matrix

A N(p) is given by:
J &8ss
(6)

~J &0

J
AN =
&o <O

AN(p) = <J, %

J84s
with g0 = g cos (2¢), g5 = g sin (2¢), and g =
\/g% + g25 which are combined in the differential retar-
dation vector g = (go, 845)7, given by Thomas [4]. As-
suming a differential retarder with a static and electrooptic
plate § = gg. + 8eo We can employ g to determine the
change in transmission and we obtain with I'y; = Ty +
I'c g (T'p—total phase retardation (bias), O—static, C—
crystal, ky—free space wave vector):

4
AT = sin T'gkyl @)
sin 2 <¢0 - %)
‘ sin 2¢ ! n,—n
Alpu = Lsin Tokol < °> < : 2) (8)
—cos 2¢g 0
T
sin 2¢ An, — An
ATE = L sin Ppkyl ’ < ’ '
—cos 2¢, —2An,

AT = sin Tgkol(k ET + K, ET + k,EM. (10)
Equation (10) introduces the sensitivity coefficients [5]
describing the linear dependence (x;, i = x, y, z) of the
change in transmission caused by the electric field com-
ponents EY, EJ, E7. As an example, we calculate the
sensitivity coefficients K., K,,, K;, for perpendicular in-
cidence in reflection mode and with respect to the sub-
strate coordinate system x;:

Ky d sz
AIE® =2kl | k, | AE, = kol | K;, | E,. (1)
KZ KZs

III. SeNnsiTIVITY COEFFICIENTS OF 3m-SYSTEMS AND
43m-SYSTEMS

Fig. 2 depicts the sensitivity coeflicients K, , K,,, K,
for the 3m-crystals LiTaO; and LiNbO;, and for perpen-
dicular incidence in the reflection mode with respect to x;
and the angle @ (retarder angle ¢, as parameter).

The diagrams emphasize the following statements: 1)
due to the same electrooptic tensor structure we obtain
maximum longitudinal sensitivity (K, ) for both ma-
terials at an angle 6 of 35° and a retarder angle ¢, of 45°
(which corresponds to the result of Aoshima [6] and Na-
gatsuma {7]), 2) LiNbO; exhibits a higher sensitivity
compared to LiTaO;, and 3) longitudinal and transverse
probing can be realized with the same electrooptic setup,
simply by changing the retarder angle ¢, [5]. However,
for a given crystal cut § = 35° (¢ = 45°) we can only
realize a quasi-longitudinal probe since the coeflicient
K, is not zero, i.e., a transverse component K, E}; is pres-
ent. This effect can be compensated by performing two
measurements with a different retarder angle at the same
probing location. For a quasi-static microwave field (neg-
ligible field components in y;-direction of propagation) we
can omit the second measurement, and 4) for the angles
6 = 35° and ¢ = 45°, we obtain maximum sensitivity
for an angle ¢ of —90°.

Table 1 shows some of the important transverse and
quasi-longitudinal probing cases of LiTaO; and LiNbO;
(3m-system) as well as for GaAs (43m-system) and
Bi;,Si0,, (42-system). In case of thick Bi;,SiO,, crystals,
an offset caused by optical activity can be taken into ac-
count by appropriate adjustment of the analyzer. An op-
timized external probe tip (3m-systems) for longitudinal
field components E7, is realized with a crystal cut 6 of
35°. Fig. 3 depicts the corresponding crystal angles. In a
similar manner, we obtain the sensitivity coeflicients of
43m-systems given in Table I. As in the case of 3m-sys-
tems, we can employ the same probing setup for tians-
verse and longitudinal probing simply by changing the re-
tarder angle ¢, if we use a crystal cut with § = 45°. For
the longitudinal case, we need an angle 6 of 90° which
corresponds for ¢ = —90° to the direct longitudinal prob-
ing in (001)-GaAs.
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TABLE I
SENSITIVITY COEFFICIENTS OF TRANSVERSE AND QUASI-LONGITUDINAL
PROBING IN L1Ta0;. LINbO;, GaAs AND Bi;,8i0,q
o
o Material/ K. K, K.
% -2 Symmetry @0 6 ¥ - 107 m/v
—
> LiTaO; 0° 35° ~90° -3.26 0 0
E-': 3m 45° 35° —-90° 0 —-2.64 —-2.71
— 45° 35° —-35° 0.152 0 —1.89
é LiNbO, 0° 35° -90° —4.91 0 0
- 3m 45° 35° -90° 0 -341 -3.87
45° 35° —38° 0.85 0 -2.38

0° 90° —90° 0 0 —-1.13
0° 45° —-90° 0 -1.13 -1.13
45°  45° -90° —1.13 0 0
0° 90° —90° 0 0 —1.64
0°  45° —90° 0 —1.64 ~1.64
45°  45° —-90° —1.64 0 0

Ky [m/V] «107'°

o . \ .
T 0N
o ¥=-90" "y | ~
* ~ y
™
- - ol e G— o —— -
T // /
= oY 0
S x,X ©=35
~J ~
7 Z
? Fig. 3. Crystal cut § = 35° (see 3m-system) and orientation of coordinate
o systems for realization of a sensitivity optimized probe tip for longitudinal
* field component E7.
™
2
£ IV. VOLUME-INTEGRAL METHOD
e
N The general description of the interaction of any optical
v . . .
= field and inhomogeneous microwave field can be derived
f— py applying a perturbation ansatz to the Lorentz-reciproc-
X ity theorem as shown by Monteath [8]. The results [4],
0 S0 0 20 o 20 w0 80 8o [9] {)f this a.pp'roach' can]lae expressed as a change of op-
transmission given by:
6 [Degree] tical transmission g y
. . . . . ik
Fig. 2. K., K, , K. of LiTaO; (solid) and LiNbQ; (dashed) with y = —90° — _]_0 (=) (+)'
(upper threye diagrams) and 6 = 35° and ¢, = 45° (lower diagram). A SBA Vol € Ace dv. (13)

For derivation of this expression, the interaction of an op-
Applying the previously described method, we obtain  tical field and microwave field is described by a two-ap-
the total change in transmission A7 as: erture-system (general twoport) shown in Fig. 4 with ap-
erturc A and B. The field amplitude transmission
coefficient A Sp,, describes the change in transmission of
the optical field due to a small perturbation of the di-
electric tensor Ag with Ag = g’ — ¢.
which is valid for a plane-wave sampling beam of infini- The probing geometry in reflection mode (reflection at
tesimal diameter. Due to the latter assumption, transverse the rear surface of external probe crystal or electrooptic
inhomogeneities of E,_are not included. substrate) is reduced to a transmission mode with a crystal

sin T'p
2

Al =

{
ko go K'E, dz (12)
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Fig. 4. Two-aperture system in transmitting mode.

of twice the length (2/). The polarizing elements are as-
sumed to be infinitesimally thin and close to the EO-crys-
tal. The optical field traveling from B to A and normalized
to the incident power at aperture B is denoted e, Con-
versely, the optical field traveling from aperture A to ap-
erture B and normalized to the incident power at aperture
A, in presence of a perturbation caused by a microwave
field, is denoted e ™)', Since the perturbation is assumed
to be very small, we can replace e™ by e‘* as shown
by Freeman [9]. Thus, the normalized change in trans-
mission in presence of a microwave field is expressed as:

Al =1"— 1= 85,85 — SpaSia

= 2Re {S;‘AASBA}' (14)

Sp4 represents the transmission without electrooptic in-
duced perturbation and can be replaced by the bias-point
value Sz, = sin (I'5/2) without introducing restrictions.
Thus we obtain:

Jko S ()T (+)
A dav t.
2n Jvol. ¢ e (5)

In the following, we assume 1) a circularly symmetric
Gaussian beam solely described by its transverse com-
ponents and 2) polarization of the Gaussian beam de-
scribed by Jones vectors and weighed by the Gaussian
field distribution.

These assumptions allow the use of the Jones-matrix
formalism for the determination of the polarization of the
(+) and (—) wave before entering the crystal in the static
state. The change A¢ with respect to the static eigenmode
system, is derived from the index of refraction matrix for
the static case (N) and under influence of an electric field
(N'). With Ag = &’ — & = N'> — N? we obtain the

_ change of the dielectric tensor as:

4 5 EO —4 2 EO
A <—"1511 - 512>
8 =
—4 o EO 4 HEO
—-n"Bn —mBn

AI—2sm£2~R {

(16)
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with neglection of higher order modes in 8E° and the ap-
proximation it = nln%/(nl + ny) = n1n2/(n1 + ny).

Under the previously stated assumptions the fields e ‘™
and e’ can be expressed with Jones vectors as follows:
e =vV®|e| and e = V7|e)|. The magnitudes
of incident wave |e*)| and reflected wave |e(™| are equal.
Thus, for the calculation of ¢* and ‘™ we only have to
consider the Jones vectors of the (+) and (—) wave at the
aperture A and B, denoted V*), V7, and V{", V{9,
respectively. With respect to the static eigenmode system
we obtain:

1 /1 ’
Vi = — 17
1 (J an
VED = W, WGTo, 0) We(Tg, ) WG Ty, ) VY (18)

with the Jones matrices of the analyzer W,, and the EO-
crystal W, and the wave plates W. The Jones matrix of
the polarizer can be neglected due to appropriate normal-
ization and with p? = exp (j(T'¢/2)) exp (j(I'y/2)) =
exp (j(I's/2)), we obtain:

o’ — p*¥ < 1> JSBa < 1> :
242 \ -1 V2 \ -1 (19

4%

Vile 1 1 ‘
Vi) == — : (20)
RS
With an arbitrarily chosen phase factor § = —= /2 for

V§", we obtain a real vector for V§’. With p, = exp

(jT/4), we obtain:
L) e
0

1 \ j [ po
W(=T, 0]V === )
<2 ’ > ? \/§<pb">

An arbitrary retarder angle ¢, is taken into consideration
by rotation of the dielectric tensor: Ag’ =
D(¢f) AeD (—pp) and with @) = ¢, — 7 /4 we obtain:

v = w <1 T, 0> v{ =
2 2

v

] r
eTAg e = é le™)? <cos —2—0 (Aesy — A€l

—j sm (Aezz + A611)> 23)

As shown by (15), we only consider the real part of (24)
and with AL, = sin (T'3/2) - cos (Ty/2), we obtain
AT for the transmitting mode to:

. T
sin 2¢q
Al = AL, S < >
Vol. \ cos 2¢g

Aey — Ae
. < 22 11> le(+)12 av (24)
2A612
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Comparison of (24) with (10) and (11) gives:

. T
sin 2¢q \" (1B — n&‘ﬁ??)
—cos 2¢, 27t gE0

T

Kx
— m 1— T m
=n|«k | E"= -2-nK ET 25)
KZ
— Al ko S 1.
=: =—\ SK'El|lePPav.
I= i — =27 Je 2 K Exle™[ V. 26)

To determine the change in transmission we need to take
into account the power-density distribution of the Gauss-
ian sampling beam. However, we neglect the different
beam waists in direction of the eigenmode axes.

In the following, we consider the perpendicular probing
case and express the transverse electric field [10] of the
beam:

e = % Jb, - ex
nbz' + jb

©exp (—jkoRi(z — zp))

@7

with the confocal parameter b = wy w7 /Ny = wiky/27
and z' =z — zgand ¢(z) = z' + jb. The position of the
beam waist is denoted z, and the beam radius as a function
of distance is given by w(£) = wy V1 + £2. With the
confocal length L = wjky7 and ¢ = 2(z — z9) /L we ob-

tain;
2 xz + y2
w2 (@) P <_2 W @) > @%

with &, = 2(z, — z9) /L and &, = 2(—z, — zy) /L, before
and after reflection, respectively. This results in the fol-
lowing expression [5] for the electrooptic-induced change
in intensity:

| po ®
5.1 e
2n 0 - J- s

* {&1&) + g8} dx, dy, dz,.

It can be shown, that in case of slightly tilted beam (see
Fig. 6), the sensitivity coefficients remain almost the same
since the perturbation terms compensate each other. The
approximate change in transmission is calculated for in-
cident and reflected beam portions individually.

The sensitivity vector K with respect to a dimensionless
vector e}, (|ey:| = 1) of the electric field, yields the scalar
product: K'E, = K"e|E™|. In case of a tilted beam the
product |E7| g, can be generalized to a scalar product of
the vectors |Ef|g = E, e,.g: and we obtain the total

81 = |e(+)]2 =

29)
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Fig. 5. Propagation of Gaussian beam within EO-crystal.
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Fig. 6. General coordinate system of reflection mode probing.

intensity change in transmission:

7==2 S S S ~K'elErel gt dv,
27’! A=B J—-o

— 0o

k oo oo 1 .
+ 2_;- Sc—»s S_w S_m Py KTeﬁExsegptg{I avy.

(30)

In case of longitudinal probing (K, = K, = 0, K, # 0),
this equation can be simplified since K” e v, is independent
of the integration variables. Furthermore, if the field can
be expressed as the gradient of a scalar potential (E,, =
grad V) and the optical wave is a solenoid field
[div (eopt£1) = 0] we can apply the Gaussian theorem and
the volume integral reduces to a surface integral:

- k oo e ]
I =K Egﬁ‘ S_ S_ [(VAglAecI)pt + VCglCegpt)ez

— 2Vgipeine,] dx, dy, (31

i.e., Al only depends on the potentials V,, V., and Vjy at
the upper and lower surface of the probing crystal, re-
spectively, and weighed with the power distribution of the
optical wave.
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Fig. 7. Transverse periodic transmission lines with external electrooptic
’ layer for determination of spatial resolution and sensitivity.

V. EVALUATION OF SPACE-HARMONIC POTENTIAL

As an example, we apply the volume-integral method
to external sampling in case of a static space harmonic
potential (phase constant = 0). The fields of planar mi-
crowave transmission lines can be expressed as a gradient
of a scalar potential for sufficiently low frequencies pro-
vided neglecting longitudinal field components: E™ =
grad ¢. The structure and the coordinate system is shown
in Fig. 7.

The electrooptic layer as well as the lateral periodic
transmission line structure (w), are assumed to be open.
. The EO-layer with a relative dielectric constant ¢, is
embedded between the top carrier layer (e,1) and an air
gap (¢,3), respectively. With the assumption of an exact
cosine shape of the field components in x-direction the
Helmholtz equation of the Hertzian vector reduces to the
Laplace equation for the scalar potential. For calculation,

we apply the following potential to the three layers: ¢ (x,-

) =¢;cosapx -+ i=1,2,3 with ¢; = Ade™*C+9 ¢,
= Be *% + Ce®%, ¢3 = Ge ** — He*®, and o =
7 /(2w). For a forced potential ¢ (x, z = —h) = V; cos
opx at z = —h, we can determine the field components
E,,; and E in the EO-active layer 2 [11]. Due to the as-
sumption EY = 0, the integration in (29) can be per-
formed with respect to y;. As an example, we consider
the purely longitudinal case which is possible for GaAs,
and for (3m) crystals like LiTaO; and LiNbO; (6 = 35°):
K, = K, = 0, and K, # 0. We obtain the intensity vari-
ation A7 at the probing position X to:

o k d poo ’
5100 = 2 [ kEre otae - x 6

+ & — X, £7)} dx dZV (32)
with v
e , | -
e ﬁ o (-Fe) N
&, &) = - wiE) . (33)

Applying the Fourier transformation we obtain the spec-
tral domain representation and we define a normalized
transmission characteristic H(a) = Al() /b(a, z = —h)
with respect to ¢ (x, z = —h) with a field-dependent term

E, = f(C(®)) and k = flen, ) [11]:
d
H(o) = K,aC(o) So (ke™ - h — %)

. (e-oﬂv'vz(él)/8 + e—aZW?(Ez)/S) dz (34)

VI. EXTERNAL ELECTROOPTIC PROBE

As an example, we choose GaAs with n = 341, A =
1.3 pm, and ¢,, = 1, ¢, = 13, ¢,, = 1. The results of
H(a) /K, (a = oy, local phase constant) are shown in Fig:
8 and Fig. 9. The transmission function H(«) exhibits a
bandpass characteristic. The maximum H,, is between -
the space-frequency ™' and d~'. Thus, a reduction of
sensitivity is caused by 4 and d. In practice, 4 must be
chosen smaller than d. :

The transmission function depends on geometrlcal and
optical parameters [11] briefly described:

1) The sensitivity |H(a)|, as well as the spatial reso-
lution, are significantly dependant on the probe distance
h. The maximum of |H(e)| at & = 1 um, compared to &
= 0.1 pm, reduces by a factor of 10. The sensitivity is
reduced by a factor of 2 (wy = 2 um, h = 10 pm, 7z, =
0, d = 30 um) for spatial frequency of « = 1.12 - 10°
m ™! which corresponds to a line spacing of 14 um.

2) An increase in electrooptic probe thickness d from
30-100 pm results in an increase of sensitivity of only 1.6
and only at lower spatial frequencies.

3) The maximum spatial resolution [3dB decrease of
H(a)] is for ideal conditions (wy =2 pm, 7z =0, h =1
pm, d = 30 yum) 1.5 - 105 m~! which corresponds to a
line width w of 10.5 um. For identical parameters, but a
probe distance of # = 0.1 um, we obtain a minimum line
width of w = 4.9 ym.

4) The dielectric constant of layer 1 has no influence

“on the sensitivity at higher spatial frequenc1es due to the

significant decay of the field components in the EO-crys-

tal.

5) The sensitivity of the probe is determined only by
the optical parameters (wy, zo) if the absolute value of
is small. An increase of minimum Gaussian radius from
wg = 2 pm to wy = 5 pm, at higher spatial frequencies «
=9 . 10° m™! results in a significant reduction of sensi-
tivity by a factor of 10. The position z; of the beam waist
within the EO-crystal only influences the spatial resolu-
tion at higher spatial frequencies.

VII. PROBING OF ARBITRARY INHOMOGENEOUS |
TRANSVERSE AND LONGITUDINAL FIELDS

The method presented can be applied to arbitrary in-
homogeneous fields. As an example, we chose a 300 pm
wide microstrip transmission line on a 400 pm thick GaAs
substrate at a frequency of 1 GHz. The optimized external
electrooptic probe (see Table I), of 100 um thick LiTaOs,
is placed at a distance of 10 um. The electric field com-
ponents were calculated using spectral domain analysis
(SDA) with a transversely unlimited structure.
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Fig. 8. Transmission characteristic H(a) with probe distance h, probe
thickness d, and dielectric constants as parameter.
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Fig. 9. Transmission characteristic H () with minimum beam radius Wo
and position of beam waist z, as parameter.
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5 6
*107*
Fig. 10. A7 of longitudinal and transverse probing with LiTaO;.

The calculated intensity AT of longitudinal and trans-
verse probing is depicted in Fig. 10. As shown, a delo-
cation between maximum intensity and location of trans-
mission line edge with increasing value, and less
pronounced peak for increasing air gap, is present. How-
ever, even at the large probe distances, the proposed si-
multaneous probing of longitudinal and transverse fields
allows the exact determination of the location of the edge
within a few pm. It can be shown, that using a 1 um gap,
30% of the available potential is evaluated, which in-
creases to 65% for a 400 pm thick EO-crystal. Further,
the method allows the derivation of correction algorithms.

VIH. CoNcLUSION

The volume-integral method presented can be applied
to the case of external and internal electrooptic probing
and, yields important results on the introduced transmis-
sion characteristic which is described by sensitivity and
spatial resolution. In case of external electrooptic sam-
pling, the influence of the probing beam parameters and
geometric dimensions of probe tip and its distance to the
planar circuit is presented. The described method can be
applied to arbitrary inhomogeneous fields and arbitrary
optical fields. The method allows the effective optimiza-
tion of the electrooptic sampling setup for various probing
geometries and planar structures, and the implementation
of correction algorithms.

REFERENCES

[1] T. Nagatsuma, T. Shibata. E. Sano, and A. Iwata, ‘‘Subpicosecond
sampling using a noncontact electro-optic probe,”” J. Appl. Phys.,
vol. 66, pp. 4001-4009, Nov. 1989.

[2] M. Y. Frankel, J. F. Whitaker, G. A. Mourou, and J. A. Valdmanis,
‘‘Experimental characterization of external electrooptic probes,”’
IEEE Micro. Guided Wave Lett., vol. 1, pp. 60-63, Mar. 1991.

[3] G. N. Ramachandran and S. Ramaseshan, “‘Crystal Optics,”” in
Handbuch der Physik, Band 25 /1, S. Fliigge (Hrsg). Berlin: Sprin-
ger-Verlag, 1962, pp. 1-30.

[4] V. Thomas, ‘‘Elektrooptische Sonde zur Potentialabtastung in inte-

grierten Hochfrequenzschaltungen,”” Ph.D. thesis, Technische Uni-

versitidt Miinchen, Lehrstuhl fur Hochfrequenztechnik, 1991.

M. Rottenkolber, *‘Theoretischer Beitrag zur Optimierung eines elek-

trooptischen Abtastkopfes fiir Mikrowellenschaltungen,’” M.S. the-

sis, Technische Universitdt Miinchen, Institut fiir Hochfrequenztech-

nik, 1992.

[6] S. Aoshima, H. Takahashi, T. Nakamura, and Y. Tsuchiya, ‘*Non-
contact picosecond electro-optic sampling utilizing semiconductor
laser pulses,”” in 33rd SPIE Conf., vol. 1155. San Diego, CA.,
Aug. 6-11, 1989.

[7]1 T. Nagatsuma and M. Shinagawa, ‘‘Picosecond electro-optic probing
of high-speed integrated circuits,”” NTT LSI Laboratories, 1990.

(5

—



THOMANN ez avl.‘: OPTIMIZATION OF ELECTROOPTIC SAMPLING BY VOLUME-INTEGRAL METHOD 2399

{8] G. D. Monteath, Applications of Electromagnetic Reciprocity Prin-
ciple.. Oxford: Pergamon, 1973. }
[9] J. L. Freeman, S. R. Jeffries, G. A. Mourou, and J. A. Valdmanis,
“‘Full field modeling of the longitudinal electrooptic probe,”” Optics
Lerters, vol. 12, pp. 765-766, 1987.
[10] H. A. Haus, Waves and fields in oproelectronics.
NJ: Prentice-Hall, 1984. }
[11] ‘M. Rottenkolber, W. Thomann, and P. Russer, ‘‘Characterization and
optimization of electrooptic sampling by volume-integral-method and
application of space-harmonic potential,”’ in MTT-S Symposium, At-
lanta, GA, June 14-16, 1993.

Englewood Cliffs,

Wolfgang Thomann (M’90) was born in Alb-
stadt, Germany, in 1962. He received the Dipl.-
Ing. (FH) degree in 1987 from the Fachhoch-
schule Furtwangen, Germany and the Dipl.-Ing.
(Univ.) degreé in 1990 from the Technische Uni-
versitdt Miinchen, Germany. Since 1990, he has
been a Research Assistant at the Technische Uni-
versitdt Miinchen. His current research interests
are microwave circuits and systems, high-speed
electronic and electrooptic sampling, electronic
pulse generation, and device modeling.

Matthias Rottenkolber was born in Miinchen,
Germany in-1966. He received the Dipl.-Ing. de-
gree in 1992 from the Technische Universitit
Miinchen, Germany.

" Since 1992, he has been with ITEC Consulting,
Miinchen, Germany. His current research inter-
ests are electrooptic systems, holography, and
speckle-pattern interferometry. )

Peter Russer (SM’81), fora photograph and biography, see this issue, p.
2155.




